From Gogeometry
Using :
- Define O middle of AB, r=ED
- AD^2+AO^2=DO^2
- a^2+(a/2)^2=(a/2+r)^2
- a^2+a^2/4=a^2/4+r^2+ar
- r^2+ar-a^2=0
- ∆=a^2+4a^2=5a^2
- r>0 => r=(a.sqr(5)-a )/2
- Draw a square symetryc of ABCD by O
- =>D becomes D’, C becomes C’, E becomes E’
- => C’D’BA is a square, D, E, O, E’, D’ are colinear
- => EG=E’G’ and FE=F’E’
- FG ꓕ DD’ => F’G’ ꓕ DD’
- ∆ADO is similar to ∆E’DG’ and EDF (aa)
- =>AD/AO=2=E’D/E’G’=ED/EF
- E’D=a+r = 2 EG and ED=r=2 EF
- =>EF+EG=(r+a+r)/2=r+a/2=(a.sqr(5)-a )/2+a/2= a.sqr(5)/2
- Therefore FG= a.sqr(5)/2