From Gogeometry
Using :
- Define h=OF
- OA=OB=R
- D, E and C are aligned
- ΔCOD is right in O => DC^2=OC^2+OD^2
- OD=r+h
- => (1) : (r+R/2)^2=(R/2)^2+(r+h)^2
- => (1) : (r+R)^2=R^2+4(r+h)^2
- OB=OA => R=2r+h => r+h=R-r
- (1) : (r+R)^2=R^2+4(R-r)^2
- => r^2+2rR+R^2=R^2+4(R^2-2rR+r^2)
- => 6rR= 3r^2
- Therefore 3R=r