From Gogeometry :
Using :
- ΔCAB’ and ΔC’AB are equilateral
- => ∠CAB’=∠C’AB=Π/3
- ∠BAB’=a+∠CAB’=∠BAC’+a’
- => a=a’
- AC’=AB and AB’=AC and a=a’=> ΔBAC and ΔB’AC’ are congruent (SAS)
- =>B’C’=BC
- But BC=BA’=>B’C’=BA’
- In the same way : ∠BCA’=∠B’CA=Π/3
- ∠BCA=c= Π/3 – ∠ACA’
- ∠B’CA’=c’= Π/3 – ∠ACA’ =>c=c’
- CB=CA’ and CA=CB’ and c=c’=> ΔBCA and ΔA’CB’ are congruent (SAS)
- =>AB=A’B’
- But AB=BC’ => A’B’=BC’
- B’C’=BA’ and A’B’=BC’ => BA’B’C’ is a parallelogram