From Gogeometry :


Using :


- ΔCAB’ and ΔC’AB are equilateral
 - => ∠CAB’=∠C’AB=Π/3
 - ∠BAB’=a+∠CAB’=∠BAC’+a’
 - => a=a’
 - AC’=AB and AB’=AC and a=a’=> ΔBAC and ΔB’AC’ are congruent (SAS)
 - =>B’C’=BC
 - But BC=BA’=>B’C’=BA’
 - In the same way : ∠BCA’=∠B’CA=Π/3
 - ∠BCA=c= Π/3 – ∠ACA’
 - ∠B’CA’=c’= Π/3 – ∠ACA’ =>c=c’
 - CB=CA’ and CA=CB’ and c=c’=> ΔBCA and ΔA’CB’ are congruent (SAS)
 - =>AB=A’B’
 - But AB=BC’ => A’B’=BC’
 
- B’C’=BA’ and A’B’=BC’ => BA’B’C’ is a parallelogram