Problem H003 dans Euclide Geometry Problem / Géométrie Euclidienne étiqueté circle par Harvey Littleman Find rProve : AIE and DHC are colinear Using : Additional pointsPythagorasSimilar trianglesThales theoremTangents to a circle •Define J in AD and K in CE such as JK // DE•In ΔAFJ : JA^2+JF^2=AF^2•(R-r)^2+R^2=(R+r)^2•R^2=(R+r)^2-(R-r)^2•R^2=4rR Therefore r=R/4 •Define L in FK such as FK ⊥ LI•ΔFLI is similar to ΔFKC =>IL/IF=CK/CF•CK=R-r=3R/4 ; CF=R+r=5R/4 ; IF=r=R/4IL=CK.IF/CF=(3R/4)r/(5R/4)=3Rr/5R=3r/5 => IL=3R/20 •FI^2=FL^2+LI^2•r^2=FL^2+(3r/5)^2•FL^2=r^2-9r^2/25=16r^2/25•Therfore FL=4r/5=R/5 •Define M in DE such as JK ⊥ IM•GM=FL•IM=(IL+LM)=3R/20 + r= 3R/20 + R/4=8R/20=2R/5=IM•ME=GE-GM=R-R/5=4R/5=ME•IM/ME=(2R/5)/(4R/5)=1/2•AD/DE=R/2R=1/2•Therefore IM/ME = AD/DE•M in DE => AIE are collinear (reverse Thales)