Triangle ABC, D in AB, E in AC, DE//BC <=> AD/AB=AE/AC=DE/BC and triangle ABC is similar to triangle ADE Thales theorem dans Euclide Geometry Principles par Harvey Littleman
Central symmetry of triangle ABC AB=A’B’, BC=B’C’, AC=A’C’ ∠ABC= ∠A’B’C’, ∠BAC=∠B’A’C’, ∠ACB= ∠A’C’B’ AB//A’B’, BC//B’C’, AC//A’C’ See also « Isometric transformation« Isometric transformation – Central symmetry dans Euclide Geometry Principles par Harvey Littleman
Axial symmetry of triangle ABC AB=A’B’, BC=B’C’, AC=A’C’ ∠ABC= ∠A’B’C’, ∠BAC=∠B’A’C’, ∠ACB= ∠A’C’B’ See also « Isometric transformation« Isometric transformation – Axial Symmetry dans Euclide Geometry Principles par Harvey Littleman
Displacement of Triangle ABC AB=A’B’, BC=B’C’, AC=A’C’ ∠ABC= ∠A’B’C’, ∠BAC=∠B’A’C’, ∠ACB= ∠A’C’B’ See also « Isometric transformation« Isometric transformation – Displacement dans Euclide Geometry Principles par Harvey Littleman
Rotation of triangle ABC from point O with angle α AB=A’B’, BC=B’C’, AC=A’C’ ∠ABC= ∠A’B’C’, ∠BAC=∠B’A’C’, ∠ACB= ∠A’C’B’ ∠(AB,A’B’)=∠(AC,A’C’)=∠(BC,B’C’)=α See also « Isometric transformation« Isometric transformation – Rotation dans Euclide Geometry Principles par Harvey Littleman
To solve a problem, it could be necessary to add one or more points. Additional points dans Euclide Geometry Principles par Harvey Littleman
Isometric transformation and combinations of Isometric transformation preserve angles and distances: displacement rotation axial symmetry central symmetry Isometric transformation dans Euclide Geometry Principles par Harvey Littleman
The quadrilateral ABCD is a parallelogram <=> Two pairs of opposite sides are parallel <=> Two pairs of opposite sides are equal <=> Two pairs of opposite angles are equal <=> Adjacent angles are supplementary <=> The diagonals bisect each other <=> One pair of opposite sides is parallel and […] Parallelogram dans Euclide Geometry Principles par herve.petit@heptic.fr
Equilateral triangle <=> AB=AC=BC ∠CAB=∠ABC=∠BCA=Π/3=60° Equilateral triangle dans Euclide Geometry Principles par Harvey Littleman
Triangles are congruent <=> they have exactly the same three sides they have exactly the same three angles they have exactly the same two angles (the third angle is deducted) Congruent triangles dans Euclide Geometry Principles par Harvey Littleman